3.663 \(\int \frac {\sqrt {\tan (c+d x)}}{\sqrt {2+3 \tan (c+d x)}} \, dx\)

Optimal. Leaf size=95 \[ \frac {i \tanh ^{-1}\left (\frac {\sqrt {3-2 i} \sqrt {\tan (c+d x)}}{\sqrt {3 \tan (c+d x)+2}}\right )}{\sqrt {3-2 i} d}-\frac {i \tanh ^{-1}\left (\frac {\sqrt {3+2 i} \sqrt {\tan (c+d x)}}{\sqrt {3 \tan (c+d x)+2}}\right )}{\sqrt {3+2 i} d} \]

[Out]

I*arctanh((3-2*I)^(1/2)*tan(d*x+c)^(1/2)/(2+3*tan(d*x+c))^(1/2))/d/(3-2*I)^(1/2)-I*arctanh((3+2*I)^(1/2)*tan(d
*x+c)^(1/2)/(2+3*tan(d*x+c))^(1/2))/d/(3+2*I)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {3575, 910, 93, 208} \[ \frac {i \tanh ^{-1}\left (\frac {\sqrt {3-2 i} \sqrt {\tan (c+d x)}}{\sqrt {3 \tan (c+d x)+2}}\right )}{\sqrt {3-2 i} d}-\frac {i \tanh ^{-1}\left (\frac {\sqrt {3+2 i} \sqrt {\tan (c+d x)}}{\sqrt {3 \tan (c+d x)+2}}\right )}{\sqrt {3+2 i} d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Tan[c + d*x]]/Sqrt[2 + 3*Tan[c + d*x]],x]

[Out]

(I*ArcTanh[(Sqrt[3 - 2*I]*Sqrt[Tan[c + d*x]])/Sqrt[2 + 3*Tan[c + d*x]]])/(Sqrt[3 - 2*I]*d) - (I*ArcTanh[(Sqrt[
3 + 2*I]*Sqrt[Tan[c + d*x]])/Sqrt[2 + 3*Tan[c + d*x]]])/(Sqrt[3 + 2*I]*d)

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 910

Int[((d_.) + (e_.)*(x_))^(m_)/(Sqrt[(f_.) + (g_.)*(x_)]*((a_.) + (c_.)*(x_)^2)), x_Symbol] :> Int[ExpandIntegr
and[1/(Sqrt[d + e*x]*Sqrt[f + g*x]), (d + e*x)^(m + 1/2)/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g}, x] &
& NeQ[c*d^2 + a*e^2, 0] && IGtQ[m + 1/2, 0]

Rule 3575

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Wit
h[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((a + b*ff*x)^m*(c + d*ff*x)^n)/(1 + ff^2*x^2), x]
, x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&
NeQ[c^2 + d^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {\tan (c+d x)}}{\sqrt {2+3 \tan (c+d x)}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\sqrt {x}}{\sqrt {2+3 x} \left (1+x^2\right )} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac {\operatorname {Subst}\left (\int \left (-\frac {1}{2 (i-x) \sqrt {x} \sqrt {2+3 x}}+\frac {1}{2 \sqrt {x} (i+x) \sqrt {2+3 x}}\right ) \, dx,x,\tan (c+d x)\right )}{d}\\ &=-\frac {\operatorname {Subst}\left (\int \frac {1}{(i-x) \sqrt {x} \sqrt {2+3 x}} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac {\operatorname {Subst}\left (\int \frac {1}{\sqrt {x} (i+x) \sqrt {2+3 x}} \, dx,x,\tan (c+d x)\right )}{2 d}\\ &=-\frac {\operatorname {Subst}\left (\int \frac {1}{i-(2+3 i) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {2+3 \tan (c+d x)}}\right )}{d}+\frac {\operatorname {Subst}\left (\int \frac {1}{i+(2-3 i) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {2+3 \tan (c+d x)}}\right )}{d}\\ &=\frac {i \tanh ^{-1}\left (\frac {\sqrt {3-2 i} \sqrt {\tan (c+d x)}}{\sqrt {2+3 \tan (c+d x)}}\right )}{\sqrt {3-2 i} d}-\frac {i \tanh ^{-1}\left (\frac {\sqrt {3+2 i} \sqrt {\tan (c+d x)}}{\sqrt {2+3 \tan (c+d x)}}\right )}{\sqrt {3+2 i} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 95, normalized size = 1.00 \[ \frac {i \tan ^{-1}\left (\frac {\sqrt {-3+2 i} \sqrt {\tan (c+d x)}}{\sqrt {3 \tan (c+d x)+2}}\right )}{\sqrt {-3+2 i} d}-\frac {i \tanh ^{-1}\left (\frac {\sqrt {3+2 i} \sqrt {\tan (c+d x)}}{\sqrt {3 \tan (c+d x)+2}}\right )}{\sqrt {3+2 i} d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Tan[c + d*x]]/Sqrt[2 + 3*Tan[c + d*x]],x]

[Out]

(I*ArcTan[(Sqrt[-3 + 2*I]*Sqrt[Tan[c + d*x]])/Sqrt[2 + 3*Tan[c + d*x]]])/(Sqrt[-3 + 2*I]*d) - (I*ArcTanh[(Sqrt
[3 + 2*I]*Sqrt[Tan[c + d*x]])/Sqrt[2 + 3*Tan[c + d*x]]])/(Sqrt[3 + 2*I]*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)/(2+3*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)/(2+3*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.25, size = 479, normalized size = 5.04 \[ -\frac {\sqrt {\frac {\tan \left (d x +c \right ) \left (2+3 \tan \left (d x +c \right )\right )}{\left (\sqrt {13}-3+2 \tan \left (d x +c \right )\right )^{2}}}\, \left (\sqrt {13}-3+2 \tan \left (d x +c \right )\right ) \left (\sqrt {13}\, \sqrt {2 \sqrt {13}+6}\, \arctan \left (\frac {\sqrt {\frac {\left (11 \sqrt {13}-39\right ) \tan \left (d x +c \right ) \left (2+3 \tan \left (d x +c \right )\right ) \left (39+11 \sqrt {13}\right )}{\left (\sqrt {13}-3+2 \tan \left (d x +c \right )\right )^{2}}}\, \sqrt {-6+2 \sqrt {13}}\, \left (11+3 \sqrt {13}\right ) \left (\sqrt {13}+3-2 \tan \left (d x +c \right )\right ) \left (11 \sqrt {13}-39\right ) \left (\sqrt {13}-3+2 \tan \left (d x +c \right )\right )}{416 \tan \left (d x +c \right ) \left (2+3 \tan \left (d x +c \right )\right )}\right ) \sqrt {-6+2 \sqrt {13}}-3 \sqrt {2 \sqrt {13}+6}\, \arctan \left (\frac {\sqrt {\frac {\left (11 \sqrt {13}-39\right ) \tan \left (d x +c \right ) \left (2+3 \tan \left (d x +c \right )\right ) \left (39+11 \sqrt {13}\right )}{\left (\sqrt {13}-3+2 \tan \left (d x +c \right )\right )^{2}}}\, \sqrt {-6+2 \sqrt {13}}\, \left (11+3 \sqrt {13}\right ) \left (\sqrt {13}+3-2 \tan \left (d x +c \right )\right ) \left (11 \sqrt {13}-39\right ) \left (\sqrt {13}-3+2 \tan \left (d x +c \right )\right )}{416 \tan \left (d x +c \right ) \left (2+3 \tan \left (d x +c \right )\right )}\right ) \sqrt {-6+2 \sqrt {13}}-12 \arctanh \left (\frac {4 \sqrt {13}\, \sqrt {\frac {\tan \left (d x +c \right ) \left (2+3 \tan \left (d x +c \right )\right )}{\left (\sqrt {13}-3+2 \tan \left (d x +c \right )\right )^{2}}}}{\sqrt {26 \sqrt {13}+78}}\right ) \sqrt {13}+44 \arctanh \left (\frac {4 \sqrt {13}\, \sqrt {\frac {\tan \left (d x +c \right ) \left (2+3 \tan \left (d x +c \right )\right )}{\left (\sqrt {13}-3+2 \tan \left (d x +c \right )\right )^{2}}}}{\sqrt {26 \sqrt {13}+78}}\right )\right )}{2 d \sqrt {\tan \left (d x +c \right )}\, \sqrt {2+3 \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {13}+6}\, \left (11 \sqrt {13}-39\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(1/2)/(2+3*tan(d*x+c))^(1/2),x)

[Out]

-1/2/d*(tan(d*x+c)*(2+3*tan(d*x+c))/(13^(1/2)-3+2*tan(d*x+c))^2)^(1/2)*(13^(1/2)-3+2*tan(d*x+c))*(13^(1/2)*(2*
13^(1/2)+6)^(1/2)*arctan(1/416*((11*13^(1/2)-39)*tan(d*x+c)*(2+3*tan(d*x+c))*(39+11*13^(1/2))/(13^(1/2)-3+2*ta
n(d*x+c))^2)^(1/2)*(-6+2*13^(1/2))^(1/2)*(11+3*13^(1/2))*(13^(1/2)+3-2*tan(d*x+c))*(11*13^(1/2)-39)*(13^(1/2)-
3+2*tan(d*x+c))/tan(d*x+c)/(2+3*tan(d*x+c)))*(-6+2*13^(1/2))^(1/2)-3*(2*13^(1/2)+6)^(1/2)*arctan(1/416*((11*13
^(1/2)-39)*tan(d*x+c)*(2+3*tan(d*x+c))*(39+11*13^(1/2))/(13^(1/2)-3+2*tan(d*x+c))^2)^(1/2)*(-6+2*13^(1/2))^(1/
2)*(11+3*13^(1/2))*(13^(1/2)+3-2*tan(d*x+c))*(11*13^(1/2)-39)*(13^(1/2)-3+2*tan(d*x+c))/tan(d*x+c)/(2+3*tan(d*
x+c)))*(-6+2*13^(1/2))^(1/2)-12*arctanh(4*13^(1/2)*(tan(d*x+c)*(2+3*tan(d*x+c))/(13^(1/2)-3+2*tan(d*x+c))^2)^(
1/2)/(26*13^(1/2)+78)^(1/2))*13^(1/2)+44*arctanh(4*13^(1/2)*(tan(d*x+c)*(2+3*tan(d*x+c))/(13^(1/2)-3+2*tan(d*x
+c))^2)^(1/2)/(26*13^(1/2)+78)^(1/2)))/tan(d*x+c)^(1/2)/(2+3*tan(d*x+c))^(1/2)/(2*13^(1/2)+6)^(1/2)/(11*13^(1/
2)-39)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\tan \left (d x + c\right )}}{\sqrt {3 \, \tan \left (d x + c\right ) + 2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)/(2+3*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(tan(d*x + c))/sqrt(3*tan(d*x + c) + 2), x)

________________________________________________________________________________________

mupad [B]  time = 5.57, size = 207, normalized size = 2.18 \[ \mathrm {atan}\left (\frac {\sqrt {2}\,d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {-\frac {3}{52}-\frac {1}{26}{}\mathrm {i}}{d^2}}\,\left (6-4{}\mathrm {i}\right )+d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {-\frac {3}{52}-\frac {1}{26}{}\mathrm {i}}{d^2}}\,\sqrt {3\,\mathrm {tan}\left (c+d\,x\right )+2}\,\left (-6+4{}\mathrm {i}\right )}{3\,\mathrm {tan}\left (c+d\,x\right )-\sqrt {2}\,\sqrt {3\,\mathrm {tan}\left (c+d\,x\right )+2}+2}\right )\,\sqrt {\frac {-\frac {3}{52}-\frac {1}{26}{}\mathrm {i}}{d^2}}\,2{}\mathrm {i}-\mathrm {atan}\left (\frac {\sqrt {2}\,d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {-\frac {3}{52}+\frac {1}{26}{}\mathrm {i}}{d^2}}\,\left (6+4{}\mathrm {i}\right )+d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {-\frac {3}{52}+\frac {1}{26}{}\mathrm {i}}{d^2}}\,\sqrt {3\,\mathrm {tan}\left (c+d\,x\right )+2}\,\left (-6-4{}\mathrm {i}\right )}{3\,\mathrm {tan}\left (c+d\,x\right )-\sqrt {2}\,\sqrt {3\,\mathrm {tan}\left (c+d\,x\right )+2}+2}\right )\,\sqrt {\frac {-\frac {3}{52}+\frac {1}{26}{}\mathrm {i}}{d^2}}\,2{}\mathrm {i} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^(1/2)/(3*tan(c + d*x) + 2)^(1/2),x)

[Out]

atan((2^(1/2)*d*tan(c + d*x)^(1/2)*((- 3/52 - 1i/26)/d^2)^(1/2)*(6 - 4i) - d*tan(c + d*x)^(1/2)*((- 3/52 - 1i/
26)/d^2)^(1/2)*(3*tan(c + d*x) + 2)^(1/2)*(6 - 4i))/(3*tan(c + d*x) - 2^(1/2)*(3*tan(c + d*x) + 2)^(1/2) + 2))
*((- 3/52 - 1i/26)/d^2)^(1/2)*2i - atan((2^(1/2)*d*tan(c + d*x)^(1/2)*((- 3/52 + 1i/26)/d^2)^(1/2)*(6 + 4i) -
d*tan(c + d*x)^(1/2)*((- 3/52 + 1i/26)/d^2)^(1/2)*(3*tan(c + d*x) + 2)^(1/2)*(6 + 4i))/(3*tan(c + d*x) - 2^(1/
2)*(3*tan(c + d*x) + 2)^(1/2) + 2))*((- 3/52 + 1i/26)/d^2)^(1/2)*2i

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\tan {\left (c + d x \right )}}}{\sqrt {3 \tan {\left (c + d x \right )} + 2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(1/2)/(2+3*tan(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(tan(c + d*x))/sqrt(3*tan(c + d*x) + 2), x)

________________________________________________________________________________________